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1. Direct Methods D

Work on direct sparse matrix methods continued under the grant. One of the

chief thrusts of our research has been how to use these sparse matrix techniques

in situations where primary memory is smaller than problem size.

Along with Andy Sherman of the Department of Computer Science at the

* University of Texas, we investigated what are called Minimal Storage Methods.

*Rather than save the factorization in auxiliary storage, we throw away most

nonzero entries and recompute them as necessary during back-solution [7, 81.

Surprisingly, for model problems, the work required is less than twice that for

conventional sparse elimination, although the bookkeeping overhead does increase

somewhat.

We investigated the use of secondary storage in conjunction with band

elimination [16, 11]. This work focused on trying to understand and

parameterize the general issues involved, designing and analyzing classes of

algorithms that use secondary storage, implementing and benchmarking these

algorithms, and studying new computer architectures and software systems that

would allow us to use secondary storage more effectively to solve banded linear

systems.

For sparse elimination, the straightforward approach to auxiliary storage

(forming the rows of the factorization one at a time while keeping the

previously computed rows in auxiliary storage and fetching them as needed) is

grossly inefficient: the I/0 overwhelms the computation. It appears, however,

".1 that the minimal-storage approach to sparse elimination [8] can be adapted to

auxiliary storage and will result in an efficient algorithm for solving very

large sparse systems of linear equations.
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Our research on iterative methods centered on multi-grid iterative methods

and on preconditioned conjugate gradient and conjugate residual methods [4, 3].

While the multi-grid algorithm has been shown mathematically to be

asymptotically optimal [21 and it well known that preconditioned conjugate

gradient is not [4], recent empirical computer studies 15] indicate that, for

problems of practical size, the preconditioned conjugate gradient method is

surprisingly competitive. Moreover, very recently Eisenstat [12] showed how to

significantly speed up preconditioned conjugate gradient codes based on

approximate factorizations, making preconditioned conjugate gradient methods

even more competitive.

We investigated extensions of many of the ideas of preconditioned

conjugate gradient methods to the class of nonsymmetric matrices with positive

definite symmetric parts. Such matrices arise, for example, in

finite-difference approximations to the convection-conduction equation [1]. We

obtained a number of startling empirical results [13, 9], but while we have some

new theory, we still cannot explain all of the experiments. We obtained the

first convergence proof [9] of Orthomin [17], one of the algorithms that appear

to be most promising in practice. Much theoretical and experimental work

remains to be done in this area. The surface has barely been scratched.

2. Mathematical Software

In order to disseminate numerical algorithms to the scientific community,

numerical analysts must prepare well-documented, modular, portable mathematical

software that implements these algorithms. Otherwise algorithms are either

ignored because they seem too complicated to program or mis-implemented,

sometimes in grossly inefficient ways. One of the prime objectives in our

research has been to implement the ideas we develop.
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Our work on mathematical software for solving very large sparse systems of

linear equations focused both on direct methods, where the major emphasis was on

adapting in-memory techniques to situations with limited memory, and on

iterative methods, where the major emphasis was on extending preconditioned

conjugate gradient methods to nonsymmetric systems.

Along with Andy Sherman of the Department of Computer Science at the

University of Texas, we developed a prototype code for Minimal Storage Sparse

Elimination [8]. In tests against our own classic Yale Sparse Matrix Package,

it proved to be surprisingly competitive for a simple model problem. The same

ideas used to implement minimal storage sparse elimination seem to apply to

adapting general sparse elimination to auxiliary storage (like disks) in such a

way as both to minimize I/O and to maximize the overlap of I/O and computation.

The straightforward implementation of sparse elimination [10, 14] does not

mesh well with the latest class of super-computer, the vector processor. Vector

processors differ from the more conventional scalar processors in their ability

to operate on vectors, sequences of contiguous or regularly spaced memory

locations, far more efficiently than on the components individually. (Thus the

time to add together two vectors of length n would be s+tn, where s denotes the

startup time and t (<< a) the time per addition, whereas the time to add

together two scalars would be s+t.) To take advantage of this vector hardware,

however, it is necessary to "vectorize" the algorithms used, sometimes replacing

I,
a nonvectorizable one that would run faster on a scalar machine with a slower

but vectorizable one. Unfortunately, the innermost loop in sparse elimination,

where the bulk of the computation is done, is of the form

DO 1 J-JMIN,JMAX
I ROW(J ) - ROW(JU(J)) + UKI*U(J)

which involves a scatter-fetch (creating a contiguous vector from randomly



scattered memory locations), adding one multiple of a vector to another, and

then a scatter-store. Only the second phase is vectorizable. On the other

hand, the MSSE approach to sparse elimination does appear to vectorize well and

could run reasonably fast.

We have investigated a number of variants of the multi-grid approach for

solving finite-difference approximations to linear boundary-value problems for

elliptic partial differential equations. To do uniform comparisons, we have

developed a package implementing multi-grid in a fairly general manner [61.

We investigated extensions of many of the ideas underlying preconditioned

conjugate gradient methods to the class of nonsymmetric matrices with positive

definite symmetric part. In order to compare the different iterative methods

and preconditionings in a common environment, we created a prototype package

that implements these methods [13], the user interface being similar to that

used in ITPACK (15]. As we gain more experience about which methods are most

effective, we hope to refine this prototype into mathematical software.
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